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ABSTRACT 

The routing in complex buildings is provided by information systems. But during a crisis situation, these systems 
may collapse due to certain incidents like an explosion, a fire or sabotage. The task of guiding people in this 
situation has to be handled in some way. In this paper we present a possible solution to this problem. We use a 
multi-agent system in a mobile ad-hoc network, without the need of any infrastructure. The main idea of the paper is 
that just by exploring the damaged building, the data of the changing environment becomes available and the 
challenge is how to fuse this data from different observers. We focused on the way of building, sharing and merging 
topological maps, using observations from individuals present in this infrastructure-less network. Besides a more 
efficient exploration of the building, the system presented in this paper can provide the rescue teams with additional 
services like finding the nearest exit. Some results of the tests we run with our system are also presented.   
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INTRODUCTION 

The routing in complex buildings and places is based on static signs. In case of a crisis routes (doors, staircases and 
corridors) can be blocked and the static routing system breaks down. There is a need for a dynamic, personalized, 
adaptive routing system. An answer to this problem can be an infrastructure-less mobile ad-hoc network that enables 
the system to share information concerning the state of the environment and other valuable information about the 
people within. The advantage of using these ad-hoc networking technologies is that the exchange of information can 
be done anywhere, anytime without any prior knowledge of the network infrastructure. Using handheld devices that 
operate in a wireless environment, communication is still possible when major infrastructural communication links 
have been damaged, destroyed or overloaded.  

The work presented in this paper is part of the Combined project running at DECIS LAB (Burghardt, 2004). 
Roughly the aim of the project is to develop an environment wherein rescue services can communicate using 
handheld devices dynamically forming MANETs (Tatomir and Rothkrantz, 2005). Users of such networks should be 
able to exchange observations through agent technology and intuitive GUI’s located on a handheld set. Agents aid 
the user in finding, storing and retrieving information from the network. Our specific interest in this paper is the 
distribution of world knowledge in these ad-hoc communication networking environments.  

In the traditional view of rescue workers there is a centralized decision making process. We adapt to a decentralized 
a decision making process. Rescue workers are exploring a dynamic changing environment. Based on the results of 
exploration, a new structure/map of the building emerges. A rescue workers base their decisions on the emerging 
map information. A centralized approach is less appropriate and implies a lot of communication. In wireless 
environments we have to take care of communication overload. 
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This paper is organized as follows. In the next subsections we describe the assumptions we made about the 
environment where our system is going to run and present related work. Next we introduce a greedy algorithm we 
use for merging the topological maps and discuss some strategies we applied in order to avoid errors and better 
recover from inconsistencies. We describe the developed simulation environment, tests and the results we obtained. 
The last section contains conclusions, future work and further applicability of our approach for crisis response. 

Assumptions 

As an anticipated setting for the system, consider a building on fire, covered with smoke where people are trying to 
leave the building and firemen are performing tasks such as trying to rescue these people and exterminating the fire. 
We make the reasonable assumption that both the firemen and the people inside have no map of the building and 
therefore are hindered in their goals by their lack of world knowledge (Figure 1). In case a map is valid we can’t 
expect it is valid anymore. During a crisis doors, staircases and corridors can be blocked. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For people (including firemen) to be able to effectively reason about their environment without any pre-knowledge, 
a model of the world needs to be constructed. Next, all the local models should be fused to a share world model. To 
build a local world model in a world with limited view (smoke, fire), implies to keep record of the crossings and 
directions and make distance estimations. But usually the main focus of interest for a fireman is to rescue people. 
We can imagine though that this process could also be left to a computer (PDA) and most of this work can be done 
in the background. As a first step to a fully automated input supply, we assume that all a person would have to do is 
to indicate that at a certain time he encounters an intersection and the number of paths with their directions. For 
reporting about the situation, we have developed an application based on icon-communication. This natural 
interaction style is based on a graphical user interface (Figure 2). It is language independent, which makes it suitable 
for crisis situations (Fitrianie and Rothkrantz 2005).  

The icons are grouped into categories, according to their meaning (signs, building elements, directions, numbers, 
crisis elements and people). Each one of the categories has a representative icon that shows the main characteristics, 
being like a hint for the 'background' list. In our example case, the exit sign icon is chosen as representative for the 
set of icons used to construct the map. In this category we also have 6 icons representing the type of crossings and 
one for a road block. The category with numbers is used to mention the number of the starting floor. For directions, 
four icons (arrows) are used to mention when a turn is made at a crossing or in case the floor is changed. A category 
with icons for stair cases, windows, doors can be used to add additional details on the map. Also is possible to 
indicate crisis elements like fire or smoke, and to give details about the presence of victims or other members of the 
emergency team. For the current floor, a graph created on observations and actions from user reports can be 
displayed on the screen of the user’s PDA.  

 

 

Figure 1.  Lack of world knowledge hinders users 
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It is also important to be able to estimate (relative) distances traveled. These distances can be calculated from the 
time between two observations, combined with the type of movement (running, walking, etc) and can be refined by 
using pedometer input. There are more possibilities but we prefer to use as little specialized hardware as possible. In 
our system we will make the assumption the user provides relatively accurate indications of distances traveled (+/- 
10%).  

During the exploration activity, each individual builds a map of his own world (Figure 3). The challenge is to share 
all this individual world models (Figure 4). Assuming they are all carrying a portable computing device capable of 
wireless communication, it is possible for them to communicate about their world models with each other and make 
attempts to build a more or less shared world model. Because a single human user is only able to explore so much of 
a particular world in a certain period, it looks promising to make attempts to combining the knowledge collected by 
different users, to be able to form more complete maps of the world. This can be a difficult problem when the agents 
do not have a common reference frame. Finding such a common reference frame is greatly simplified when 
topological maps are used, as they provide a concise description of the world.  By topological maps we mean graph-
like representations of a world with ordinal distances between graph nodes (Remolina and Kuipers 2004). Another 
constraint is that our world model will only use angles of exactly 90°, i.e. we will only create and merge rectilinear 
topological maps.  

  

Figure 3.  Users have distinct world models Figure 4.  Combined world model 

As a proof of concept, we developed a simulation system for MANET, where topological maps of an environment 
can be created and distributed (Rothkrantz, Van Velden, and Datcu 2005). Our main goal involves storing and 
distributing of location information based on user observations. The processes involved are primarily based on 
individual routes and any context information they might gather, such as where exits are, and determining the 
shortest route to one of them. The goal for each agent node is to construct this internal map of the world by using its 
own observations and to share it with other nodes. In this way, the knowledge of one node is distributed to the other, 
nearby nodes. In practice this means that nodes are within communication range. In our case the data shared relate to 
information about halls and crossings and can be extended to suit the full usage needs.  

 

Figure 2. Iconic interface for PDA 
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Related work 

In recent years, there has been increased interest on exploring environments and building maps using sensing robots, 
which in fact is similar to our situation. Many different approaches have been proposed for such problems. Some 
systems use occupancy maps (Stewart, Fox, Konolige, and Limketkai 2003), some topological mapping (Dedeoglu 
and Sukhatme 2000; Huang and Beevers 2004), some use robots with many sensory capabilities and some with 
almost none. Our approach though is that the robot is ‘replaced’ by a human user. This means there will be different 
forms of environmental input than when using a robot. Many of the robot-mapping systems depend on the sensors to 
be very accurate. A human can never be as accurate in measuring distances, angles etc, as most combinations of 
sensors used in these systems. What a user is able to be accurate enough in (better than the average robot) is 
mentioning when he encounters an intersection, meaning indicating there is a corridor to the left and one to the right 
etc. A user is also able to give a rough estimation of distances, which means he indicates one corridor is for example 
twice as long as the other.  

Even though people have different sensing capabilities than robots, it is still possible to use many ideas of robot 
mapping in our system. As soon we have a collection of consistent partial maps, that have enough data in common, 
we can match these maps with each other. This is done separate for each floor of the building. If a match is found 
they can be merged, resulting in more complete maps of the world. Such a matching and merging process can in 
essence be seen as a form of the maximum common sub graph problem (Bunke and Kandel 2000). It is important to 
note that to be able to write an algorithm for merging topological maps, the maps are assumed to be consistent 
(Huang and Beevers 2005). Meaning no two vertices may represent the same place. Not having this constraint would 
make merging maps virtually impossible and would require different techniques for solving the merging problem. 

Human observations about the world can be considered subjective and inexact. The users can have different ages, 
rapidity, a certain grade of attention and a lot of others characteristics which could influence the way they measure a 
corridor. The input received by the agents is thus fuzzy, local and probabilistic. Fuzziness in this system means 
although a corridor has been measured as 100 steps a time t1 it can be measured 90 steps at t2. So each element in the 
graph representation of the environment, vertexes and edges, will have different attributes (or labels (Champin and 
Solnon 2003)) which will be compared later during the matching process.  

TOPOLOGICAL MAP MERGING 

In this section we describe the algorithm we used for the map merging for each single floor. We consider the 2D 
representation of a map as a graph. To get the complete 3D model of the building, the process has to be repeated 
separately for each different floor.    

Constructing the hypotheses graph 

The topological maps are represented in our case as graphs G1 = (V1, E1) and G2 = (V2, E2), where V1 and V2 are the 
vertices and E1 and E2 are the connecting edges. In order to be able to merge two maps, we first need to match the 
maps together, building a hypothesis and choosing the correct one (i.e. the best match). A hypothesis is a possibly 
rotated sub graph that the two maps have in common.  

The first step taken into account for map matching is building a list of all vertices that match each other in the two 
maps. Two vertexes only match if they have the same edge directions. A vertex that needs to be rotated in order to 
match is also taken into consideration (Figure 5). We distinguish 4 cases: no rotation of G2, rotate G2 with 90º, 180º 
and 270º.  

 

 

 

 

 

 

So the vertices of the two maps (the agent’s map and the one received from another agent) are compared in every of 
the four possible directions (north, east, west and south) and if they have the same edge directions, they are added in 

 

Figure 5.  Matching vertexes 
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a list of matches for the chosen rotation. We expect exactly known attribute vertices, such as the type of the vertices 
to match perfectly. This means, that even if the user can explore only one corridor at the time, being at a crossing, he 
will indicate the presence of the other unexplored corridors. However, attributes that are subject to measurement 
error, like the length of edges, can be compared with a similarity test. In the case of our simulation we don’t have 
any fuzzy variables of a vertex, but in a real environment or an extension of our simulation, such variables might 
occur. 

As soon as the list of matching vertices is available we use it to build the hypothesis graph. All the matched pairs 
will represent a vertex in the set VH of the graph GH. The next step is to build the set of edges EH of the graph. For 
each pair of vertexes (u1, u2) ∈  VH (where u1 ∈  V1, u2 ∈  V2), we analyze the matches by testing the corresponding 
pairs of edges (e1, e2) (with e1∈E1, e2∈E2) leaving the paired vertices u1 and u2. If the edges are compatible and the 
vertices at the ends v1∈V1 and v2∈V2 are also compatible ((v1, v2) ∈VH), then the pair of edges (e1, e2) is added to 
the set EH of the hypotheses graph. Edges may also have both exactly and inexactly known attributes. In our system, 
they have their path length compared with a similarity test. Next we present the pseudocode for the graph 
constructing algorithm.  

for all   (u1, u2) ∈  VH do 
for all  d in {north, east, south, west} do \\ test the four possible directions 
     e1 

�  getEdge(E1, u1, d) 
     e2 

�  getEdge(E2, u2, d) 
     if  e1 

�
 null and  e2 

�
 null then 

       v1 
�  getOtherVertex(V1, u1, e1) 

       v2 
�  getOtherVertex(V2, u2, e2) 

       if  v1 
�
  null and v2 

�
  null then 

 if  (v1, v2) ∈  VH then 
if  compareEdges(e1, e2) then 

                 add (EH, [(u1, u2), (v1,v2)])  \\ add the edge to the hypotheses graph 
     endif 
 endif 
        endif 
     endif    
end for 

end for 

Once the hypotheses graph GH = (VH, EH) is constructed, we determine the resulted hypotheses by computing all the 
connecting components of the obtained graph GH. Each connecting component represents a possible hypothesis. 
From all the four rotations, the best one is chosen. The selection criterion is the number of its components.  

The complexity of the algorithm is O(4| V1||V2|) for the construction of VH, O(4| VH |) for the construction of EH and 
again O(4| VH |) for the hypothesis selection. If we consider | V1|=|V2|=n, then we have | VH |<n and the total 
complexity of the algorithm is O(n2).  

An example 

For a better explanation we give a small example. Let consider the two graphs G1 = (V1, E1) and G2 = (V2, E2), with 
the vertexes labeled as in the Figures 6 and 7. 

 
 

Figure 6.  Example graph G1 Figure 7.  Example graph G2 
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The elements of the hypotheses graph GH = (VH, EH) are in case of the rotations with 0º and 270º of the graph G2: 

• no rotation (Figure 8): 

VH  = {(1,a); (2,b); (3,a); (4,c); (5,d); (5,g); (6,e); (7,f); (7,h); (8,f); (8,h)} 

EH = {[(1,a),(2,b)]; [(2,b),(5,d)]; [(4,c),(5,d)]; [(4,c),(6,e)]; [(5,d),(7,f)]; [(6,e),(7,f)]; [(6,e),(8,h)]} 

The five connecting components are: {[(1,a); (2,b); (4,c); (5,d); (6,e); (7,f); (8,h)], [(3,a)], [(5,g)], [(7,h)], [(8,f)]}.   

• rotation 270º (Figure 8): 

VH  = {(4,e); (5,c); (6,f); (6,h); (7,d); (7,g); (8,d); (8,g)} 

EH = {[(4,e),(5,c)]; [(4,e),(6,f)]; [(5,c),(7,d)]; [(6,f),(7,d)]} 

The four connecting components are: {[(4,e); (5,c); (6,f); (6,h); (7,d)], [(7,g)], [(8,d)], [(8,g)]}. 

A sub graph in one map can be matched to multiple sub graphs in the other map under separate hypotheses, but a 
pair of matched vertices with a given edge correspondence can appear in only one hypothesis. In Figure 9 we see the 
two cases of possible failure in the hypothesis construction: (3,h) is not a matching pair and the edges (6,8) and (f,g) 
are not compatible because of the big difference between their lengths.   

 

 

Figure 8.  Hypotheses graph 
construction - no rotation 

Figure 9.  Hypotheses graph construction – 
G2 rotated with 270º 

 

So the selected hypothesis in our case is: [(1,a); (2,b); (4,c); (5,d); (6,e); (7,f); (8,h)].   

Merging the maps 

There is a chance the processes described above do not supply a (large enough – less than 3 elements) hypothesis. If 
this is the case and not enough vertices can be matched to make a good hypothesis yet, the map received is stored 
internally. In that case we can try the matching process later on, when a more complete world model is available.  

If the process is successful, the next step is to merge (or flatten) the two maps into one single map. Estimates of path 
lengths can be updated by combining the measurements from the two maps for corresponding edges. The edge 
orientations at the corresponding vertices can be similarly merged. Parts of one map not present in the other should 
be added. The merging process is globally performed in four steps (Figure 10): 

• Rotate the received map so its orientation matches the local node’s map 

• Shift the rotated map so its coordinates match the local agent’s map 

• Add any new vertexes from the rotated and shifted map to the local node’s map 

• Connect everything together (update edge lengths, check for inconsistency’s etc.) 
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PREVENTING AND RESTORING FROM ERRORS 

Closing the loop 

If a user would travel long enough in a building, he will eventually return to a location that was visited before from a 
different direction. The process described, will result in a loop in the graph, which should be detected and closed 
(Savelli and Kuipers 2004). As an example of closing loops we take an even simpler square shaped world (Figure 
11). Applied to the square world the process described before might result in the following ‘map’, where the two 
upper-left intersections, should be recognized as one and the same, but at the moment we still have 5 vertices in the 
graph where there are only 4 intersections in the world. 

 

 

 

 

 

 

 

 

 

A correctly detected closed loop is very valuable information, as it is required to make a map consistent. But before 
being able to close a loop we should be able to detect and build hypotheses concerning possible loops. For this we 
roughly follow a procedure that checks for the existence of vertexes next to a given one that might close a certain 
loop. If we can find two matching vertexes, then a loop hypothesis is started. For our algorithm it is also important 
to note that a loop always has a minimum of 4 vertices and an even number of turns. To make the graph consistent 
when two matching vertexes are found, small adjustments can be made to the endpoints of edges. Whenever a loop 
hypothesis has been formed we can start testing it by comparing edge lengths of the supposed loop with new 
measurements. These measurements will result in accepting or rejecting the loop. 

Recovering from inconsistencies 

Please note that the choices made, may later turn out to be incorrect. For example, early in the process of exploring a 
self-similar environment, a user might seem to be exploring the same area when in fact they are exploring similar 
but distinct areas. As it is crucial a local map is consistent, this is checked each time a change is made: when a new 
observation is made, when a loop hypothesis was accepted and closed, and each time two maps have been merged. 
Merging two maps can lead to inconsistencies, as the selected hypothesis might not have been correct or the map 
received wasn’t entirely correct. By inconsistency we mean that according to the map there should be an edge 
leaving a vertex in a certain direction, but when the agent arrives at that point, he just notices that there isn’t any 
edge. The conclusion is that the matching was made in a wrong way.  Encountering such an inconstancy will in most 

 

Figure 10. Map merging process 

 

Figure 11. Open loop 
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cases only lead to merely discarding the changes made for this hypothesis which have not been verified by local 
observations or other agents thus far. A better way to solve such situations is to record with every node received 
from other agent, the id of that agent and a timestamp when this thing happened. This makes it possible for 
discovered inconsistencies to be removed or corrected later on without discarding the whole map. The reason why 
we include also the timestamps is to know when the matching with the map of another agent was computed. If only 
the id of an agent would be stored, finding an inconsistency for a vertex received from that agent would lead to the 
removal of all the other vertexes received from him, at different moments of time. This is not correct. What it has to 
be done is to delete only the vertexes received from the same agent at the same time with the wrong vertex. Of 
course that these vertexes could be related to others, maybe added later to the agent’s map. When removing such a 
vertex from the map, also the corresponding edges have to be updated. After this process, the map might get split in 
more pieces. Only the one containing the part explored by the user himself will be stored.  

As an example have a look back to Figure 2. There we display the graph on user’s PDA. The circled vertexes and 
the doted lines represent elements of the map which have been received by another agent but haven’t been yet 
explored by the current user. So it might be the chance that there was a mistake in the merging process. They will be 
completely validated only when the user himself will pass that crossings and corridors. 

SYSTEM TESTS 

A building like environment, where individuals are exploring an unknown map is simulated. Each individual in the 
field is equipped with a Personal Digital Assistant (PDA) and can communicate with other PDA’s which are in his 
vicinity. All the PDA’s form dynamically ad-hoc networks. To make our simulation as realistic as possible, we 
implemented the IEEE 802.11B MAC Layer (IEEE 802.11 working group 1999) features concerning the series of 
agreements used for sending and receiving of data.  

The simulation was performed on three different maps: one with 18 nodes and 830 m of corridors (Figure 12), one 
with 30 nodes and 4800 m of corridors (Figure 13) and respectively a map with 100 nodes and 9180 m of corridors 
(Figure 14). The PDA’s transmission range was limited to 160 m. In order to get the fuzzy information the users got 
different step length, between 0.9m and 1m. Automatic navigation was implemented to simulate the user exploration 
decisions, looking for the nearest unexplored area. Each test was run for 10 times and the average time it took to an 
agent to find the complete map was measured.  

 

The results presented in the Table 1, clearly shows the gain of the process of sharing and merging maps: the larger 
the map, the larger the gain and also the more agents, the better. Agents that start in a map that was already explored 
by others, logically, have the most gain; after they have explored a small part of the world they can simply merge the 
large map parts with their own.  

In another test, the 30 intersections world was pre-explored completely by 5 agents and after that a fresh agent was 
added. The new agent received the complete map from multiple agents and was able to find the complete correct 
map within 536 steps traveled. Considering it takes 8000 steps on average for an agent to explore this world on its 
own, this is a considerable gain.  

   

Figure 12. 18 intersections world Figure 13. 30 intersections world Figure 14. 100 intersections world 
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CONCLUSIONS 

Our experiments conducted in a simulated world show that it is very well possible to distribute, and merge world 
knowledge in a mobile ad-hoc multi-agent environment. Even in such an environment with limited communication 
possibilities our test results showed there is a significant gain found when solving a mapping problem with multiple 
distributed agents. As expected, the larger the map the better results on how useful distributing and merging partial 
maps is. We are also now implementing a client server version of our system in order to test our approach in real 
time and with real data.  

It might be necessary to retain in the map of the building, some details, like the position of a door, a window or other 
significant elements which could be easily observed by an agent. The purpose of using these details is to help the 
agents avoid the confusion between similar places of the building. If the system has only the representation of the 
building as a topological map, and the building is a symmetric one, it is very probable for the agents to believe that 
they have explored the same parts of the building, in the merging process, when instead they have explored different 
ones, but with the same representation. By using some particular elements, it could be easier for them to make the 
distinction between similar areas of the building and in this way to improve the matching algorithm.  

The knowledge gathered by an agent running on a user’s PDA, can be used to provide different services such as the 
guidance of the user to a certain location or find the nearest exit. In the context of a crisis, such a system can collect 
information about crisis indicators (fire, smoke, etc), and reason about the state of the building (blocked corridors or 
locked doors). Having this type of knowledge available in an agent network can be used to coordinate the rescue 
actions of individuals and groups.  
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